Why should we trust automated systems?

John Wilkes, HP Labs
SMDB’08, Cancun, Mexico
It’s inevitable
hardware vs administrator IT costs

• Storage costs are dropping
 – 1995: ~$5000/GB raw
 – 2005: $0.5/GB raw

• People costs are not:
 – 2004–5 admin salary: US$68k
 – growing ~0–6%/year
 [SAGE-USA survey]
How to avoid unpleasant surprises?

• Service Level Agreements (SLAs)
SLAs

as contracts

• have you tried writing one?
an SLO

X

an SLA
SLAs

as contracts

• gospel in, garbage out?

• people are very good at coping with oddities and conflicts – computers less so
 – modal behavior (Airbus vs. Boeing)
 – rigid tradeoffs
 – ignoring “obvious” inputs
Doesn’t utility fix this?
Doesn’t utility fix this?

• sure!
 – if you can extract the utility function & write it down
 – but this is hard ... it’s a human data-extraction issue
 – approximations are commonplace (e.g., treat factors as orthogonal/independent – Multi-Attribute Utility Theory)

• by the way: “policies” are probably not the answer
 – if they mean policy rules of the form:
 if <condition> then <action>
Suggestion: treat this as a **trust issue**

- **When** do people accept automation?
 - if they believe the *average benefits* outweigh the costs
 - e.g., “people are expensive compared to machines”
 - and if they believe that the *extreme outcomes* are no worse than if mediated by a human
 - frequency
 - size of consequence

but ... most people are risk averse for rare outcomes
Trust

• A belief that a system will “do the right thing”
 – or at least, not the wrong thing

• How established?
 – experience, more experience, and observing others’ experiences (yet more experience)
 – understanding why outcomes are what they are
 – reassurance that the system will do the right thing
Trust experience

• Leverage as many prior experiences as possible, not just this decision-makers’
 – reputation systems
 – explicitly presenting “similar” inputs/outcomes in response to requests

• Provide learning experiences
 – preview, then proceed
 – sure – go ahead
 – stop bugging me!
Trust understanding why

• problem:
 – machine learning \(\cong \) "seemed a good idea at the time"

• basic approach: explain the decisions that are made
 – expend effort on representing/visualizing the choices
 – let people drill down into proposals
 – goal: teach people to predict what the system would do
Trust reassurance

• build in limits on outlier behavior
 - e.g., trip-wire based on size of financial consequence
 ➔ needs models of likely consequences

• auditing
 - design-time: is it likely to work?
 - deployment time: is it built + configured right?
 - runtime: is it still doing the right thing?
 ➔ need to trust the monitoring, too
more focus on trust than on mechanisms, please!