
Autopilot: workload autoscaling at Google
Krzysztof Rzadca

Google + Univ. of Warsaw
kmrz@google.com

Pawel Findeisen
Google

pafinde@google.com

Jacek Swiderski
Google

jswiderski@google.com

Przemyslaw Zych
Google

pzych@google.com

Przemyslaw Broniek
Google

broniek@google.com

Jarek Kusmierek
Google

jdk@google.com

Pawel Nowak
Google

pawelnow@google.com

Beata Strack
Google

bstrack@google.com

Piotr Witusowski
Google

witus@google.com

Steven Hand
Google

sthand@google.com

John Wilkes
Google

johnwilkes@google.com

Abstract
In many public and private Cloud systems, users need to
specify a limit for the amount of resources (CPU cores and
RAM) to provision for their workloads. A job that exceeds
its limits might be throttled or killed, resulting in delaying or
dropping end-user requests, so human operators naturally
err on the side of caution and request a larger limit than the
job needs. At scale, this results in massive aggregate resource
wastage.

To address this, Google uses Autopilot to configure re-
sources automatically, adjusting both the number of concur-
rent tasks in a job (horizontal scaling) and the CPU/memory
limits for individual tasks (vertical scaling). Autopilot walks
the same fine line as human operators: its primary goal is
to reduce slack – the difference between the limit and the
actual resource usage – while minimizing the risk that a task
is killed with an out-of-memory (OOM) error or its perfor-
mance degraded because of CPU throttling. Autopilot uses
machine learning algorithms applied to historical data about
prior executions of a job, plus a set of finely-tuned heuristics,
to walk this line. In practice, Autopiloted jobs have a slack
of just 23%, compared with 46% for manually-managed jobs.
Additionally, Autopilot reduces the number of jobs severely
impacted by OOMs by a factor of 10.

Despite its advantages, ensuring that Autopilot was widely
adopted took significant effort, including making potential
recommendations easily visible to customers who had yet
to opt in, automatically migrating certain categories of jobs,
and adding support for custom recommenders. At the time

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6882-7/20/04.
https://doi.org/10.1145/3342195.3387524

MachineMachineMachine

Recommenders
Autopilot
service Actuator Borgmaster

resource
usage log

Moving
window

ML

custom

tasktasktask Borglet

task limits,
start/stop

task counts,
task limits

recommended
limits

cgroup limits,
start/stopusage data

Figure 1. Autopilot dataflow diagram.

of writing, Autopiloted jobs account for over 48% of Google’s
fleet-wide resource usage.

ACM Reference Format:
Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw
Zych, Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata
Strack, Piotr Witusowski, Steven Hand, and John Wilkes. 2020.
Autopilot: workload autoscaling at Google. In Fifteenth European
Conference on Computer Systems (EuroSys ’20), April 27–30, 2020,
Heraklion, Greece. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3342195.3387524

1 Introduction
Many types of public and private Cloud systems require
their users to declare how many instances their workload
will need during execution, and the resources needed for
each: in public cloud platforms, users need to choose the
type and the number of virtual machines (VMs) they will
rent; in a Kubernetes cluster, users set the number of pod
replicas and resource limits for individual pods; in Google,
we ask users to specify the number of containers they need
and the resource limits for each. Such limits make cloud
computing possible, by enabling the Cloud infrastructure to
provide adequate performance isolation.

But limits are (mostly) a nuisance to the user. It is hard to
estimate how many resources a job needs to run optimally:
the right combination of CPU power, memory, and the num-
ber of concurrently running replicas. Load tests can help

https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3342195.3387524

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Rzadca et. al

find an initial estimate, but these recommendations will be-
come stale as resource needs change over time because many
end-user serving jobs have diurnal or weekly load patterns,
and traffic changes across longer time scales as a service
becomes more or less popular. Finally, the resources needed
to handle a given load vary with new features, optimizations
and updates of the underlying software or hardware stack.
Exceeding the requested resources can result in poor per-
formance if the CPU is capped, or cause a task to be killed
because it runs out of memory (an OOM). Neither is good.
As a result, a rational user will deliberately overestimate

the resources their jobs need, resulting in poor utilization
of physical resources. One analysis [26] of a month-long
trace of jobs executed at one of Google’s clusters [27] shows
50% average memory utilization; another analysis [23] of Al-
ibaba’s YARN cluster showed tasks’ peak memory utilization
never exceeding 80%.
In response to the difficulties in configuring resources, a

common pattern is to adopt a horizontal autoscaler, which
scales a job by adding or removing replicas in response to
changes in the end-user traffic, or the average CPU utiliza-
tion. All major cloud providers (AWS, Azure and GCP) pro-
vide a horizontal autoscaling function; it is also available in
some Cloud middleware, such as Kubernetes. A less common
pattern is to use vertical autoscaling to tune the amount of
resources available to each replica. The two techniques can
also be combined.
Autopilot is the primary autoscaler that Google uses on

its internal cloud. It provides both horizontal and vertical au-
toscaling. This paper focuses on Autopilot’s vertical scaling
of memory, since this is less commonly reported. The paper:

• Describes Autopilot, and the two main algorithms
it uses for vertical autoscaling: the first relies on an
exponentially-smoothed sliding window over historic
usage; the other is a meta-algorithm based on ideas
borrowed from reinforcement learning, which runs
many variants of the sliding window algorithm and
chooses the one that would have historically resulted
in the best performance for each job;

• Evaluates the effectiveness of Autopilot’s algorithms
on representative samples of Google’s workload; and

• Discusses the steps we took to have Autopilot widely
adopted across our fleet.

2 Managing cloud resources with Borg
Autopilot’s goals and constraints follow from Google’s Borg
infrastructure, and it is tuned for Google’s workload. We
provide a brief overview of both here: for more details about
Borg see [34], and for more detailed information about the
workload see [26, 27, 31, 35].

2.1 Machines, jobs and tasks
The Google compute infrastructure is made up of many clus-
ters, spread in multiple geographical locations. A median
cluster has roughly 10 000 physical machines, and runs many
different kinds of workloads simultaneously. A single physi-
cal machine might simultaneously compute a memory- and
CPU-heavy batch computation, store and serve queries for a
slice of a memory-resident database and also serve latency-
sensitive end-user requests.
We call a particular instance of a workload a job. A job

is composed of one or more tasks. A task is executed on a
single physical machine; a single machine executes multiple
tasks concurrently. A job is a logical entity that corresponds
to a service with some functionality (e.g., a filesystem or an
authentication service); tasks do the actual work, such as
serving end-user or file-access requests. It is not unusual for
a job to stay up for months, although during this time we
might perform multiple roll-outs of the binary that the task
runs. During such a roll-out, new tasks gradually replace
tasks running the older binary.
The workloads we run can be split into two categories:

serving and batch. Serving jobs generally aim at strict per-
formance guarantees on query response time (e.g., a request-
latency service level objective or SLO of ≤ 50ms at the
95%ile). Such tight latency requirements preclude any in-
band resource-allocation decisions beyond those of the OS
kernel, so serving jobs have the resources they request ex-
plicitly set aside for them. In contrast, batch jobs aim to
finish and exit “quickly”, but typically have no strict com-
pletion deadlines. Serving jobs are the primary driver of our
infrastructure’s capacity, while batch jobs generally fill the
remaining or temporarily-unused capacity, as in [4].
An out-of-memory (OOM) event terminates an individ-

ual task. Some jobs are reasonably tolerant of OOM events;
some are not at all; and some fall in between. Overall, jobs
composed of more tasks and having less state experience less
service degradation when an individual task terminates, thus
are more OOM-tolerant. Some jobs require low, repeatable
latency to serve requests; some do not. Autopilot chooses
defaults based on a job’s declared size, priority and class,
but permits our users to override them. Borg evicts tasks in
order to perform security and OS updates, to make space
for higher-priority tasks, and to let us pack work onto the
machines more efficiently. We consciously share the burden
of providing service resiliency between the compute cluster
infrastructure and our applications, which are expected to
run additional tasks to work around evictions and hardware
failures. Borg publishes an expected maximum rate of these
evictions, and the difference between the observed eviction
rate and this gives us the freedom to perform experiments
with a task’s resource settings – an occasional OOM while
we learn what a task needs is OK. (Tools such as VM live

Autopilot: workload autoscaling at Google EuroSys ’20, April 27–30, 2020, Heraklion, Greece

migration are used to hide these internal optimizations from
external Cloud VMs.)

A typical serving job has many tasks and a load balancer
that drives the traffic to the available ones, so losing a task
simply causes its load to be spread to others. This is normal,
not a catastrophic failure, and enables us to be more aggres-
sive about the utilization of our infrastructure, as well as
to handle occasional hardware failures gracefully. Similar
resilience is built into our batch jobs, using techniques such
as those used in MapReduce [6].

2.2 Borg scheduler architecture
Each cluster is managed by a dedicated instance of Borg, our
custom-built cluster scheduler. Below, we briefly describe
the Borg architecture and features that directly influence
Autopilot design; refer to [34] for a complete description.

Borg has a replicated Borgmaster that is responsible for
making scheduling decisions, and an agent process called
the Borglet running on each machine in the cluster. A single
machine simultaneously executes dozens of tasks controlled
by the Borglet; in turn, it reports their state and resource
usage to the Borgmaster. When a new job is submitted to the
Borgmaster, it picks one or more machines where there are
sufficient free resources for tasks of the newly submitted job
– or creates this situation by evicting lower-priority tasks to
make space. After the Borgmaster decides where to place a
job’s tasks, it delegates the process of starting and running
the tasks to the Borglets on the chosen machines.

2.3 Resource management through task limits
To achieve acceptable and predictable performance, the tasks
running on a machine must be isolated from one another.
As with Kubernetes, Borg runs each task in a separate Linux
container and the local agent sets the container resource lim-
its to achieve performance isolation using cgroups. Unlike
traditional fair-sharing at the OS level, this ensures that a
task’s performance is consistent across different executions
of the same binary, different machines (as long as the hard-
ware is the same) and different neighbors (tasks co-scheduled
on the same machine) [38].

In our infrastructure, CPU and RAM are the key resources
to manage. We use the term limit to refer to the maximum
permitted amount of each resource that may normally be
consumed. Since Borg generally treats the jobs’ tasks as
interchangeable replicas, all tasks normally have the same
limits.
A job expresses its CPU limit in normalized milli-cores

[31], and this limit is enforced by the standard Linux kernel
cgroups mechanism. If there is little contention (as measured
by the overall CPU utilization), tasks are allowed to use CPU
beyond their limits. However, once there is contention, limits
are enforced and some tasks may be throttled to operate
within their limits.

A job expresses its memory limit in bytes. As with the
standard Linux cgroups, the enforcement of a job’s RAM
limit might be hard or soft, and the job’s owner declares the
enforcement type when submitting the job. A task using
a hard RAM limit is killed with an out-of-memory (OOM)
error as soon as the task exceeds its limit, and the failure
is reported to the Borgmaster.1 A task using a soft RAM
limit is permitted to claim more memory than its limit, but
if the overall RAM utilization on a machine is too high, the
Borglet starts to kill tasks that are over their limit (with an
OOM error) until the machine is deemed no longer at risk
(cf. the standard cgroup enforcement that simply prevents
over-the-limit containers reserving more memory).
Borg allows a job to modify its resource requirements

while the job is running. In horizontal scaling a job can dy-
namically add or remove tasks. In vertical scaling, a job can
change its tasks’ RAM and CPU limits. Increasing a job’s
RAM and CPU limits is a potentially costly operation, be-
cause some tasks might then no longer fit onto their ma-
chines. In such cases, the Borglets on these machines will
terminate some lower-priority tasks; these tasks, in turn,
will get rescheduled to other machines and may trigger addi-
tional terminations of even lower priority tasks. (A few years
ago, we drastically reduced the effective number of priority
levels to reduce the amount of this kind of cascading.)
Although it is common to over-provision a job’s limits,

there is some back-pressure: we charge service users for the
resources they reserve, rather than the ones they use, and
the requested resources decrement the user’s quota – a hard
limit on the aggregate amount of resources they can acquire,
across all their jobs, in a cluster. This is similar to the use of
pricing and quotas for VMs in public clouds. Charging and
quotas both help, but in practice have only limited effect: the
downsides of under-provisioning typically far outweigh the
benefits obtained by requesting fewer resources. We have
found this to be a recurring theme: theoretically-obtainable
efficiencies are often hard to achieve in practice because the
effort or risk required to do so manually is too high. What
we need is an automated way of making the trade-off. This
is what Autopilot does.

3 Automating limits with Autopilot
Autopilot uses vertical scaling to fine-tune CPU and RAM
limits in order to reduce the slack, i.e., the difference between
the resource limit and the actual usage, while ensuring that
the tasks will not run out of resources. It also uses horizontal
scaling (changing the number of tasks in a job) to adjust to
larger-scale workload changes.

1The standard Linux cgroup behavior is to kill one of the processes executing
inside a container, but to simplify failure handling, the Borglet kills all the
task’s processes.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Rzadca et. al

3.1 Architecture
The functional architecture of Autopilot is a triple of closed-
loop control systems, one for horizontal scaling at the per-job
level, the other two for vertical scaling of per-task resources
(CPU and memory). The algorithms (described in detail in
subsequent sections) act as controllers. Autopilot considers
jobs separately – there is no cross-job learning.

Autopilot’s implementation (Figure 1) takes the form of a
collection of standard jobs on our infrastructure: each cluster
has its own Autopilot. Each of Autopilot’s resource recom-
menders (that size a job according to its historic usage) runs
as a separate job, with three task replicas for reliability. A
replicated Autopilot service, with an elected master, is re-
sponsible for selecting the recommender to use for a job and
passing (filtered) recommendations to the Borgmaster via an
actuator job. If the request is to change the number of tasks,
the Borgmaster spawns or terminates tasks accordingly. If
the request is to change resource limits, the Borgmaster
firsts makes any scheduling decisions needed to accommo-
date them, and then contacts the appropriate Borglet agents
to apply the changes. An independent monitoring system
keeps track of how many resources each task uses; Autopilot
just subscribes to updates from it.
Today, our users explicitly opt-in their jobs to use Au-

topilot, using a simple flag setting; we are in the process of
making this the default, and instead allowing explicit opt-
outs. Users may also configure several aspects of Autopilot’s
behavior, such as: (1) forcing all replicas to have the same
limit, which is useful for a failure tolerant program with just
one active master; and (2) increasing the limits so that load
from a replica job in another cluster will be able to fail over
to this one instantaneously.
When a Autopiloted job is submitted to the Borgmaster,

it is temporarily queued until Autopilot has had a chance to
make an initial resource recommendation for it. After that,
it proceeds through the normal scheduling processes.

3.2 Vertical (per task) autoscaling
The Autopilot service chooses the recommender(s) to use for
a job according to whether the resource being autoscaled is
memory or CPU; how tolerant the job is to out-of-resource
events (latency tolerant or not, OOM-sensitive vs. OOM-
tolerant); and optional user inputs, which can include an
explicit recommender choice, or additional parameters to
control Autopilot’s behavior, such as upper and lower bounds
on the limits that can be set.

3.2.1 Preprocessing: aggregating the input signal. The
recommenders use a preprocessed resource usage signal.
Most of this preprocessing is done by our monitoring system
to reduce the storage needs for historical data. The format
of aggregated signal is similar to the data provided in [35].
The low-level task monitoring records a raw signal that

is a time series of measurements for each task of a job (e.g.,

Table 1. Notation used to describe the recommenders

𝑟𝑖 [𝜏] a raw, per-task CPU/MEM time series (1s resolution)
𝑠𝑖 [𝑡] an aggregated, per-task CPU/MEM time series

(histograms, 5 min resolution)
𝑠 [𝑡] an aggregated, per-job CPU/MEM time series

(histograms, 5 min resolution)
ℎ[𝑡] a per-job load-adjusted histogram
𝑏 [𝑘] the value of k-th bin (boundary value) of the histogram
𝑤 [𝜏] the weight to decay the sample aged 𝜏
𝑆 [𝑡] the moving window recommendation at time 𝑡
𝑚 a model (a parametrized argmin algorithm)
𝑑𝑚 the decay rate used by model𝑚
𝑀𝑚 the safety margin used by model𝑚
𝐿 the value of a limit tested by the recommender

𝐿𝑚 [𝑡] the limit recommended by model𝑚
𝐿[𝑡] the final recommendation of the ML recommender
𝑜 (𝐿) the overrun cost of a limit 𝐿
𝑢 (𝐿) the underrun cost of a limit 𝐿
𝑤𝑜 weight of the overrun cost
𝑤𝑢 weight of the underrun cost
𝑤Δ𝐿 weight of the penalty to change the limit
𝑤Δ𝑚 weight of the penalty to change the model

𝑑 decay rate for computing the cost of a model
𝑐𝑚 [𝑡] the (decayed) historical cost of a model m

CPU or RAM usage, or the number of queries received). We
denote the value recorded by the monitoring system at time
𝜏 from task 𝑖 as 𝑟𝑖 [𝜏]. This time series typically contains a
sample every 1 second.

To reduce the amount of data stored and processed when
setting a job’s limits, our monitoring system preprocesses
𝑟𝑖 [𝜏] into an aggregated signal 𝑠 [𝑡], which aggregates val-
ues over, typically, 5 minute windows. A single sample of
the aggregated signal, 𝑠 [𝑡], is a histogram summarizing the
resource usage of all the job’s tasks over these 5 minutes.

More formally, for each window 𝑡 , the aggregated per-task
signal 𝑠𝑖 [𝑡] is a vector holding a histogram over the raw
signal 𝑟𝑖 [𝜏] with 𝜏 ∈ 𝑡 . For a CPU signal, the elements of this
vector 𝑠𝑖 [𝑡] [𝑘] count the number of raw signal samples 𝑟𝑖 [𝜏]
that fall into each of about 400 usage buckets: 𝑠𝑖 [𝑡] [𝑘] =

|{𝑟𝑖 [𝜏] : 𝜏 ∈ 𝑡 ∧𝑏 [𝑘 − 1] ≤ 𝑟𝑖 [𝜏] < 𝑏 [𝑘]}|, where 𝑏 [𝑘] is the
𝑘-th bucket’s boundary value (these values are fixed by the
monitoring system). For a memory signal we record in the
histogram just the task’s peak (maximum) request during
the 5 minute window (i.e., the per-task histogram 𝑠𝑖 [𝑡] [𝑘]
has just one non-zero value). The memory signal uses the
peak value rather than the entire distribution because we
typically want to to provision for (close to) the peak memory
usage: a task is more sensitive to underprovisioning memory
(as it would terminate with an OOM) than CPU (when it
would be just CPU-throttled).

We then aggregate the per-task histograms 𝑠𝑖 [𝑡] into a
single per-job histogram 𝑠 [𝑡] by simply adding 𝑠 [𝑡] [𝑘] =∑

𝑖 𝑠𝑖 [𝑡] [𝑘]. We do not explicitly consider individual tasks
– e.g., by examining extreme values. Since individual tasks

Autopilot: workload autoscaling at Google EuroSys ’20, April 27–30, 2020, Heraklion, Greece

in most Borg jobs are interchangeable replicas, we use the
same limits for all of them, except in a few special cases.

3.2.2 Movingwindow recommenders. Themovingwin-
dow recommenders compute limits by using statistics over
the aggregated signal 𝑠 .

We want the limits to increase swiftly in response to rising
usage, but reduce slowly after the load decreases to avoid a
too-rapid response to temporary downward workload fluc-
tuations. To smooth the response to a load spike, we weight
the signal by exponentially-decaying weights𝑤 [𝜏]:

𝑤 [𝜏] = 2−𝜏/𝑡1/2 , (1)

where 𝜏 is the sample age and 𝑡1/2 is the half life: the time
after which the weight drops by half. Autopilot is tuned to
long-running jobs: we use a 12 hour half life for the CPU
signal and a 48 hour half life for memory.
One of the following statistics over 𝑠 is used to compute

the recommendation 𝑆 [𝑡] at time 𝑡 :
peak (𝑆max) returns the maximum from recent samples,

𝑆max [𝑡] = max𝜏 ∈{𝑡−(𝑁−1),...,𝑡 }{𝑏 [𝑗] : 𝑠 [𝜏] [𝑗] > 0}, i.e.,
the highest value of a non-empty bucket across the
last N samples, where N is a fixed system parameter.

weighted average (𝑆𝑎𝑣𝑔) computes a time-weighted av-
erage of the average signal value:

𝑆𝑎𝑣𝑔 [𝑡] =
∑∞

𝜏=0𝑤 [𝜏]𝑠 [𝑡 − 𝜏]∑𝑁
𝜏=0𝑤 [𝜏]

, (2)

where 𝑠 [𝜏] is the average usage of histogram 𝑠 [𝜏], i.e.,
𝑠 [𝜏] =

(∑
𝑗 (𝑏 [𝑗]𝑠 [𝜏] [𝑗])

)
/
(∑

𝑗 𝑠 [𝜏] [𝑗]
)
.

𝑗-%ile of adjusted usage (𝑆𝑝 𝑗) first computes a load-ad-
justed, decayed histogram ℎ[𝑡] whose 𝑘th element
ℎ[𝑡] [𝑘] multiplies the decayed number of samples in
bucket 𝑘 by the amount of load 𝑏 [𝑘]:

ℎ[𝑡] [𝑘] = 𝑏 [𝑘] ·
∞∑
𝜏=0

𝑤 [𝜏] · 𝑠 [𝑡 − 𝜏] [𝑘]; (3)

and then returns a certain percentile 𝑃 𝑗 (ℎ[𝑡]) of this
histogram. The difference between ℎ and the standard
histogram 𝑠 is that in 𝑠 every sample has the same, unit
weight, while in ℎ the weight of the sample in bucket
𝑘 is equal to the load 𝑏 [𝑘].

Note that a given percentile of the load-adjusted usage 𝑆𝑝 𝑗
can differ significantly from the same percentile of usage
over time. In many cases, we want to ensure that a given
percentile of the offered load can be served when the limit
is set to accommodate the offered load, rather than simply
a count of times that instantaneous observed load can be
handled – i.e, we want to weight the calculation by the load,
not the sample count. This difference is illustrated in Figure 2:
if the limit was set at 1 (the 90%ile by time) then the 9/19
units of load in the last time instant would be above the limit
(lower dashed line). In this case, the load-adjusted histogram

90%ile by
time * load

90%ile by time

time

lo
ad

Figure 2. The 90%ile of a load signal can be significantly different
than the 90%ile of the integral of the load-time curve. In this exam-
ple, the 90%ile of the load is 1 unit, using a time-based samples, but
10 units if the magnitude of the load is also considered.

ℎ is computed as follows. A single observation counted by
the load-adjusted histogram ℎ can be interpreted as a unit
of the signal area processed at a certain load (the current
level of the signal). ℎ is equal to ℎ[1] = 1 · 9 (load of 1 during
9 time units) and ℎ[10] = 10 · 10 (load of 10 during 1 time
unit). The 90%ile of ℎ, or the limit required so that 90% of
signal area is processed at or below the limit, is therefore 10
– which in this case means the whole signal can be processed
within the limit.

Autopilot uses the following statistics based on the signal
and the job class. For CPU limits, we use:

• batch jobs: 𝑆𝑎𝑣𝑔 , the mean, since if a job tolerates CPU
throttling, the most efficient limit for the infrastruc-
ture is the job’s average load, which allows the job to
proceed without accumulating delays.

• serving jobs: 𝑆𝑝95, the 95%ile, or 𝑆𝑝90, the 90%ile of
load-adjusted usage, depending on the job’s latency
sensitivity.

For memory, Autopilot uses different statistics as a func-
tion of the job’s OOM tolerance. This is set by default to
“low” for most large jobs, and “minimal” (the most stringent)
for small ones, but can be overridden by the user:

• 𝑆𝑝98 for jobs with low OOM tolerance.
• 𝑆max for jobs with minimal OOM tolerance.
• For jobs with intermediate OOM tolerance, we select
values to (partially) cover short load spikes; we do this
by using the maximum of 𝑆𝑝60, the weighted 60%ile,
and 0.5𝑆max, half of the peak usage.

Finally, these raw recommendations are post-processed
before being applied. First, a recommendation is increased
by a 10–15% safety margin (less for large limits). Then, we
take the maximum recommendation value seen over the last
hour to reduce fluctuations.

3.2.3 Recommenders based on machine learning. In
principle, Autopilot solves a machine learning problem: for
a job, based on its past usage, find a limit that optimizes a
function expressing both the job’s and the infrastructure’s
goals. The method described in the previous section (setting

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Rzadca et. al

a limit based on a simple statistics on a moving window)
specifies an algorithm to solve this problem. In contrast,
Autopilot’s ML recommenders start with a cost function – a
specification of the desired solution – and then for each job
pick appropriate parameters of a model to optimize this cost
function. Such automation allows Autopilot to optimize for
each job the parameters that the previous method fixed for
all jobs, such as the decay rate 𝑡1/2, the safety margin or the
downscaling stabilization period.
Internally, an ML recommender is composed of a large

number of models. For each job the recommender periodi-
cally chooses the best-performing model (according to the
cost function defined below computed over historical usage);
then the chosen model is responsible for setting the limits.
Each model is a simple argmin-type algorithm minimizing
the cost – models differ by weights assigned to individual
elements of argmin. One of the recurring problems of ML
methods is interpretability of their results [8]: in Autopilot,
the limits that the recommender sets must be explainable to
the job owner. Having many simple models helps in inter-
preting ML recommender’s actions: a single model roughly
corresponds to inferred characteristics of a job (e.g., models
with long stabilization times correspond to jobs that have
rapidly changing utilizations). Then, given the weights im-
posed by the chosen model, its decisions are easy to interpret.
More formally, for a signal 𝑠 , at time 𝑡 the ML recom-

mender chooses from an ensemble of models {𝑚} a single
model𝑚[𝑡] that is used to recommend the limits. A model
is a parameterized argmin algorithm that computes a limit
given historical signal values. A model𝑚 is parameterized
by a decay rate 𝑑𝑚 and a safety margin𝑀𝑚 .

At each time instant 𝑡 , a model tests all possible limit val-
ues 𝐿 (possible limit values correspond to subsequent bounds
of the histogram buckets, 𝐿 ∈ {𝑏 [0], . . . , 𝑏 [𝑘]}). For each
limit value 𝐿, the model computes the current costs of under-
and overruns based on the most recent usage histogram 𝑠 [𝑡]
and then exponentially smooths it with the historic value.
The overrun cost 𝑜 (𝐿) [𝑡] counts the number of samples in
buckets over the limit 𝐿 in the most recent histogram:

𝑜 (𝐿) [𝑡] = (1−𝑑𝑚) (𝑜 (𝐿) [𝑡−1])+𝑑𝑚
(∑

𝑗 :𝑏 [𝑗]>𝐿 𝑠 [𝑡] [𝑗]
)
. (4)

Similarly, the underrun cost 𝑢 (𝐿) [𝑡] counts the number of
samples in buckets below the limit 𝐿,

𝑢 (𝐿) [𝑡] = (1−𝑑𝑚) (𝑢 (𝐿) [𝑡−1])+𝑑𝑚
(∑

𝑗 :𝑏 [𝑗]<𝐿 𝑠 [𝑡] [𝑗]
)
. (5)

Then, a model picks a limit 𝐿′
𝑚 [𝑡] that minimizes a weighted

sum of overruns, underruns and a penalty Δ(𝐿, 𝐿′
𝑚 [𝑡 − 1])

for a possible change of the limit:

𝐿′
𝑚 [𝑡] = argmin

𝐿

(
𝑤𝑜𝑜 (𝐿) [𝑡]+𝑤𝑢𝑢 (𝐿) [𝑡]+𝑤Δ𝐿Δ(𝐿, 𝐿′

𝑚 [𝑡−1])
)
,

(6)
where Δ(𝑥,𝑦) = 1 if 𝑥 ≠ 𝑦 and 0 otherwise. (Using the
Kronecker delta, Δ(𝑥,𝑦) = 1 − 𝛿𝑥,𝑦 .) This function captures

the three key costs of making resource allocation decisions
in a large-scale system. Overruns express the cost of the
lost opportunity – in a serving job when an overrun occurs
queries get delayed, meaning some end-users might be less
willing to continue using the system. Underruns express the
cost of the infrastructure: the more resources a job reserves,
the more electricity, machines and people are needed. The
penalty termΔ helps avoid changing the limits too frequently,
because that can result in the task no longer fitting on its
current machine causing it (or other tasks) to be evicted.

Finally, the limit is increased by the safety margin𝑀𝑚 , i.e.,

𝐿𝑚 [𝑡] = 𝐿′
𝑚 [𝑡] +𝑀𝑚 . (7)

To pick a model at runtime (and therefore to optimize the
decay rate 𝑑𝑚 and the safety margin 𝑀𝑚 for a particular
job), the ML recommender maintains for each model its
(exponentially smoothed) cost 𝑐𝑚 which is a weighted sum
of overruns, underruns and penalties for limit changes:

𝑐𝑚 [𝑡] = 𝑑

(
𝑤𝑜𝑜𝑚 (𝐿𝑚 [𝑡], 𝑡) +𝑤𝑢𝑢𝑚 (𝐿𝑚 [𝑡], 𝑡)+

𝑤Δ𝐿Δ(𝐿𝑚 [𝑡], 𝐿𝑚 [𝑡 − 1])
)
+ (1 − 𝑑)𝑐𝑚 [𝑡 − 1].

(8)

As historic costs are included in 𝑐𝑚 [𝑡 − 1], the underrun 𝑢𝑚
and the overrun 𝑜𝑚 costs for a given model consider only
the most recent costs, i.e., the number of histogram sam-
ples outside the limit in the last sample, thus 𝑜𝑚 (𝐿𝑚 [𝑡], 𝑡) =∑

𝑗 :𝑏 [𝑗]>𝐿 𝑠 [𝑡] [𝑗], and 𝑢𝑚 (𝐿𝑚 [𝑡], 𝑡) = ∑
𝑗 :𝑏 [𝑗]<𝐿 𝑠 [𝑡] [𝑗].

Finally, the recommender picks the model that minimizes
this cost, but with additional penalties for switching the limit
and the model:

𝐿[𝑡] = argmin
𝑚

(
𝑐𝑚 [𝑡]+𝑤Δ𝑚Δ(𝑚[𝑡−1],𝑚)+𝑤Δ𝐿Δ(𝐿[𝑡], 𝐿𝑚 [𝑡])

)
.

(9)
Overall, the method is similar to the multi-armed bandit

problem with an ‘arm’ of the bandit corresponding to the
value of the limit. However, the key property of the multi-
armed bandit is that once an arm is chosen, we can’t observe
the outcomes of all other arms. In contrast, once the signal is
known for the next time period, Autopilot can compute the
cost function for all possible limit values — except in rare
cases when the actuated limit turns out to be too small and a
task terminates with an OOM (we show that OOMs are rare
in Section 4.3). This full observability makes our problem
considerably easier.
The ensemble has five hyperparameters: the weights in

the cost functions defined above (𝑑 ,𝑤𝑜 ,𝑤𝑢 ,𝑤Δ𝐿 and𝑤Δ𝑚).
These weights roughly correspond with the dollar opportu-
nity vs the dollar infrastructure costs. We tune these hyper-
parameters in off-line experiments during which we simulate
Autopilot behavior on a sample of saved traces taken from
representative jobs. The goal of such tuning is to produce a
configuration that dominates alternative algorithms (such
as the moving window recommenders) over a large portion

Autopilot: workload autoscaling at Google EuroSys ’20, April 27–30, 2020, Heraklion, Greece

of the sample, with a similar (or slightly lower) number of
overruns and limit adjustments, and significantly higher uti-
lization. Such tuning is iterative and semi-automatic: we per-
form a parameter sweep (an exhaustive search) over possible
values of the weights; and then manually analyze outliers
(jobs for which the performance is unusually bad). If we con-
sider that behavior unacceptable, we manually increase the
weight of the corresponding jobs when aggregating results
during the next iteration of the parameter sweep.
These off-line experiments use raw (unadjusted) usage

traces, i.e., they do not try to adjust the signal according
to newly set limits (e.g., after an OOM a task should be
terminated and then restarted). However, depending on a
particular job, the impact of an OOM or CPU throttlingmight
be different – for some jobs, an OOMmay increase the future
load (as a load of the terminated task is taken over by other
tasks), while for others, it might result in a decrease (as end-
users fall offwhen the quality of service degrades). In practice
this is not an issue, because usage-adjusting events are fairly
rare, and we continually monitor Autopilot in production,
where issues like overly-frequent OOMs are easy to spot.

3.3 Horizontal autoscaling
For many jobs, vertical autoscaling alone is insufficient: a
single task cannot get larger than the machine it is running
on. To address this, Autopilot horizontal scaling dynamically
changes the number 𝑛 of tasks (replicas) in a job as a func-
tion of the job’s load. The horizontal and vertical scaling
mechanisms complement each other: vertical autoscaling
determines the optimal resource allocation for an individual
task, while horizontal autoscaling adds or removes replicas
as the popularity and load on a service changes.

Horizontal autoscaling uses one of the following sources
to derive the raw recommendation 𝑛𝑟 [𝑡] at time instant 𝑡 :

CPU utilization: The job owner specifies (1) the aver-
aging window for the CPU usage signal (the default is
5 minutes); (2) a horizon length 𝑇 (the default horizon
is 72 hours); (3) statistics 𝑆 : max or 𝑃95, the 95%ile;
and (4) the target average utilization 𝑟 ∗. Autopilot
computes the number of replicas at time 𝑡 from the
value of 𝑆 for the most recent T utilization samples,
𝑟𝑆 [𝑡] = 𝑆𝜏 ∈[𝑡−𝑇,𝑡]{

∑
𝑖 𝑟𝑖 [𝜏]}. Then, the raw recommen-

dation for the number of replicas is 𝑛𝑟 [𝑡] = 𝑟𝑆 [𝑡]/𝑟 ∗.
Target size: the job owner specifies a function 𝑓 for

computing the number of tasks, i.e., 𝑛𝑟 [𝑡] = 𝑓 [𝑡]. The
function uses data from the job monitoring system.
For example, a job using a queuing system for man-
aging requests can scale by the 95%ile of the request
handling time; a filesystem server might scale by the
amount of filespace it manages.

Horizontal autoscaling requires more customization than
the vertical autoscaling, which requires no configuration for
a vast majority of jobs. Even in the standard CPU utilization

algorithm, the job owner has to at least set the target average
utilization 𝑟 ∗ (which is similar to how horizontal autoscal-
ing in public clouds is configured). In our infrastructure,
horizontal autoscaling is used mainly by large jobs. Their
owners usually prefer to tune the autoscaler to optimize
job-specific performance metrics, such as the 95%ile latency
(either directly through specifying target size; or indirectly,
by experimentally changing the target average utilization
and observing the impact on the metrics).
The raw recommendation 𝑛𝑟 [𝑡] is then post-processed

to produce a stabilized recommendation 𝑛𝑠 [𝑡] which aims
to reduce abrupt changes in the number of tasks. Autopilot
offers a job owner the following choice of smoothing policies
(with reasonable defaults for the average job):

deferred downscaling returns the maximum recom-
mendation from the 𝑇𝑑 most recent recommendations:
𝑛𝑠 [𝑡] = max𝑡−𝑇𝑑 ,𝑡 {𝑛𝑟 [𝑡]}. Thus, downscaling is de-
ferred for the user-specified time 𝑇𝑑 , while upscaling
is immediate. Most of our jobs use a long 𝑇𝑑 : roughly
40% use 2 days; and 35% use 3 days.

slow decay avoids terminating too many tasks simulta-
neously. If the current number of tasks 𝑛[𝑡] exceeds
the stabilized recommendation 𝑛𝑠 [𝑡], some tasks will
be terminated every 5 minutes. The number of tasks
to terminate at a time is chosen to reduce the number
of tasks by half over a given period (98% of jobs use
the default of one hour).

defer small changes is, to some degree, the opposite of
the slow decay: it ignores changes when the difference
between the recommendation and the current number
of tasks is small.

limiting growth allows the job owner to specify a limit
on the fraction of tasks that are initializing (i.e., haven’t
yet responded to health checks), and thus limit the rate
at which tasks are added.

4 Recommender quality
This section explores how effective Autopilot is at Google,
using samples from our production workloads. We focus on
vertical scaling of RAM here because OOMs have such a
directly measurable impact. We refer to [31] for an overview
of the impact of CPU scaling.

4.1 Methodology
Our results are based on observations made by the monitor-
ing system that monitors all jobs using our infrastructure.
The large scale of our operation gives us good statistical
estimates of the actual gain of Autopilot, but the downside of
any purely observational study is that it doesn’t control the
treatment a job receives (Autopilot or manually-set limits),
so we needed to compensate for this as far as possible.
One alternative to an observational study would be an

A/B experiment, in which we would apply Autopilot to a

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Rzadca et. al

randomly chosen half of a sample set of jobs. Although we
did such A/B studies on small groups of jobs, migrating
high-priority, large, production jobs requires explicit consent
from the jobs’ owners, so was not practical at a statistically-
significant scale.
Another alternative would be a simulation study using a

recorded trace, but these have their own biases, andwe do not
have a reliable way to predict how a real job would respond
to a simulated event such as CPU-throttling (e.g., end users
observing increased latency might disconnect, lowering CPU
usage, or reissue their queries, increasing the CPU usage)
or an OOM event (e.g., the task might restart and succeed if
the problem was a temporary overload, or simply error out
again if it was caused by a memory leak).

To mitigate the problems of observability studies, we use
results sampled from several different job populations.
The first population is a (biased) sample of 20 000 jobs

chosen randomly across our fleet. We sample 5 000 jobs each
from the following four categories: jobs with manually-set
limits that use hard RAM limits; jobs withmanually-set limits
that use soft RAM limits; jobs that use the Autopilot moving
window recommender; and jobs that use the Autopilot ML
recommender. This population gives us fleet-wide measures
of the effects of Autopilot, provided we control for a few
potential issues:

• Most jobs with manually-set RAM limits use hard lim-
its, whereas Autopilot switches all its jobs to soft RAM
limits. This switch might itself reduce the number of
OOMs2. We mitigate this problem by sampling equal
numbers of jobs with hard and soft RAM limits.

• A job might be forced to use manual limits because
Autopilot had trouble setting its limits correctly.We ad-
dress this problem by using a second population which
is comprised of a sample of 500 jobs that started to use
Autopilot in a particular calendar month. We report
their performance during the two calendar months
just before and just after the change, to mitigate the
risk that binaries or load characteristics might have
changed. Even this population could be biased because
we can only sample jobs that were successfully mi-
grated, but our success rate is high, so we do not be-
lieve this is a significant concern.

4.1.1 Metrics. The performance metrics we report on are
based on samples taken over 5-minute aggregation windows
(the default for our monitoring system), across calendar days
(to align with how we charge for resource allocations), and
typically use 95th percentiles, to achieve an appropriate bal-
ance between utilization and OOM rates. The metrics are as
follows:

2Memory leaks can be found more quickly with hard limits; an internal
user survey told us that most preferred them for non-Autopiloted jobs.

footprint for a job during a calendar day is the sum of
the average limits of the tasks (each task weighted by
its runtime during that day). The footprint directly
corresponds to the infrastructure costs of a job: once
a task requests resources, other high-priority tasks
cannot reclaim them. Footprint is expressed in bytes;
however, we normalize it by dividing the raw value
in bytes by the amount of memory a single (largish)
machine has. So, if a job has a footprint of 10 machines,
it means that it is allocated the amount of RAM equal
to that of 10 machines (it does not mean it is allocated
on 10 machines exclusively dedicated to this job).

relative slack for a job during a calendar day is (limit
minus usage) divided by limit – i.e., the fraction of re-
quested resources that are not used. Here, usage is the
95%ile of all 5-minute average usage values reported
for all of a job’s tasks during a calendar day, and limit
is the average limit over that 24 hour period.

absolute slack for a job during a calendar day (mea-
sured in bytes) directly measures waste: it is the sum
of limit-seconds minus usage-seconds over all tasks of
a job, divided by 24× 3600 (one day). This aggregation
puts more emphasis on larger, more costly, jobs. Here,
limit-seconds is the integral of the requested memory
limit across the running time of the tasks, using the 5
minute averages. We normalize absolute slack as we
normalize footprint, so if the total absolute slack for
an algorithm is 50, we are wasting the amount of RAM
equal to that of 50 machines. Achieving a small value
of absolute slack is an ambitious target: it requires that
all tasks have their limits almost exactly equal to their
usage at all times.

relative OOM rate is the number of out-of-memory
(OOM) events experienced by a job during a day, di-
vided by the average number of running tasks the
job has during that day. It is directly related to how
many additional tasks our users need to add to a job
to tolerate the additional unreliability imposed on it
by Autopilot. Since OOMs are rare, we also track the
number of job-days that experience no OOMs at all.

The metrics are reported for job-days (i.e., each job will
report 30 or 31 such values in a calendar month), and cal-
culate statistics (e.g., the median relative slack) over all the
reporting days for all the jobs.

Autopilot may hit a scaling limit when it tries to increase
the limit for a job (e.g., the task becomes larger than the
available quota, or a user-specified boundary, or even a single
machine’s size). We did not filter out such OOMs as it is not
clear what this job’s future behavior would be, and the impact
of such events should be independent of the algorithm used.

4.1.2 Job sampling and filtering. We show performance
of a sample of jobs executing on our infrastructure in a
single calendar month (or 4 months, in case of the analysis of

Autopilot: workload autoscaling at Google EuroSys ’20, April 27–30, 2020, Heraklion, Greece

migrated jobs). While our infrastructure runs many types of
jobs, its size is driven by high-priority, serving jobs, as such
jobs are guaranteed to get the resources they declare as their
limits. Thus, tighter limits translate directly to more capacity
and a reduced rate of future infrastructure expansion. Our
analysis therefore focuses on these jobs.
Unless otherwise noted, we consider only long-running

jobs (services that are serving for at least the whole calendar
month) as these jobs have the most significant impact on our
infrastructure [26]. We also filter out a few job categories
with special-purpose, unusual SLOs, and jobs using custom
recommenders, to focus the discussion on the quality of the
default algorithms.

4.2 Reduction of slack
Autopiloted jobs have significantly lower slack than non-
Autopiloted jobs. Figure 3a shows the cumulative distribution
function (CDF) of slack per job-days. The average relative
slack of a non-Autopiloted job ranges from 60% (hard limits)
to 46% (soft limits); while the average relative slack of a
Autopiloted job ranges from 31% (moving window) to 23%
(ML).

Non-Autopiloted jobs waste significant capacity. Figure 3b
shows the cumulative distribution function of absolute slack
by jobs within our sample. The total absolute slack summed
over our sample of 10 000 non-Autopiloted jobs (and aver-
aged over the month) is equal to more than 12 000 machines;
while the absolute slack of the sample of Autopiloted jobs is
less than 500 machines. The difference corresponds to tens
of millions of USD of machine costs.
These comparisons might be biased, however, as when

constructing those samples we controlled the number of jobs
from each category, not the total amount of resources: if all
Autopiloted jobs had small usage, and all non-Autopiloted
jobs had large usage, we might end up with a similar savings
of absolute slack regardless of the quality of limits in each
group (however, the relative slack comparisons are still valid).
To address this, we show the CDF of the footprint of jobs
in Figure 3c. This plot confirms that Autopiloted jobs do
have smaller footprints compared to non-Autopiloted jobs.
However, as we will see when analyzing jobs that migrated
to Autopilot, this smaller footprint is, at least partially, a
consequence of Autopilot reducing jobs’ limits. Moreover,
small jobs use Autopilot by default (Section 5).
Finally, we analyze the reduction of slack in jobs that

recently started to use Autopilot (Figure 4). Almost all jobs
used hard memory limits before the migration; and almost
all use the ML recommender after the migration. Our plots
show results over 4 months of jobs’ lifetime. All jobs start
to use Autopilot in the same calendar month, denoted as
month 0 (m0). We show the performance of these jobs over
the two previous months, denoted as m-1 and m-2 when jobs
used manual limits; and also performance over two months

following the migration, denoted as m+1 and m+2 when jobs
used limits set by Autopilot.
Figure 4a shows the CDF for relative slack per job-days.

In the month before the migration, the average relative slack
was 75%, with a median of 84%. In the month following
the migration, the average relative slack decreased to 20%
and the median decreased to 17%. The distribution of slack
values remains consistent in the two months following the
migration, suggesting that the gains are persistent.
The absolute slack (Figure 4b) show significant savings:

before the migration, these jobs wasted an amount of RAM
equal to the capacity of 1870 machines; after the migration,
the jobs waste only 162 machines: by having migrated these
jobs, we saved the capacity of 1708 machines.

The CDF of migrated jobs’ footprint (Figure 4c) shows that
the footprint of jobs increases in time suggesting organic
growth in traffic. The total footprint of jobs two months be-
fore the migration was smaller than in the month before the
migration; similarly, the total footprint in the month after the
migration was smaller than the footprint two months after
the migration. Migration in m0 reversed this trend: while
footprint organically grows month-by-month, the footprint
in m+1 was notably smaller than the footprint in m-1. After
migration, the rate by which the footprint grows was also
reduced, as the CDF of m+2 is closer to m+1 than the CDF
of m-2 is to m-1.
The distribution of footprint of 500 migrated jobs (Fig-

ure 4c) differs from the footprint of the 20 000 jobs sampled
across our fleet (Figure 3c): the migrated jobs have a larger
footprint than the fleet as a whole. This is because many
small jobs were automatically migrated earlier than m0, the
month we picked as the reference month for this sample (see
Section 5 for details).

4.3 Reliability
The previous section demonstrated that Autopilot results in
significant reduction of wasted capacity. However, a trivial
algorithm, setting the limit to 0, would result in even better
results by these metrics – at the expense of frequent OOMs!
In this section we show that Autopiloted jobs have higher
reliability than the non-Autopiloted ones.

Figure 5 shows the cumulative distribution function (CDF)
of relative OOMs by job-days. OOMs are rare: over 99.5%
of Autopilot job-days see no OOMs. While the ML recom-
mender results in slightly more OOM-free job-days than
the moving window recommender, it also leads to slightly
more relative OOMs (0.013 versus 0.002 per task-day). Both
algorithms clearly dominate manual limit setting. With hard
RAM limits, around 98.7% job-days are OOM-free; and the
relative OOM rate is 0.069/task-day. Soft RAM limit jobs
had a better relative OOM rate of 0.019, but slightly fewer
OOM-free job-days (97.5%).
The number of OOMs naturally depends on the relative

slack – higher slack means that more memory is available,

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Rzadca et. al

0.0 0.2 0.4 0.6 0.8 1.0
memory slack, p95

0.0

0.2

0.4

0.6

0.8

1.0

Autopilot ML
Autopilot moving window
manual, hard limit
manual, soft limit

(a) CDF of relative slack (fraction of claimed,
but unused memory).

10−2 10−1 100 101 102

absolute slack [machines]

0.0

0.2

0.4

0.6

0.8

1.0

Autopilot ML
Autopilot moving window
manual, hard limit
manual, soft limit

(b) CDF of absolute slack (amount of claimed,
but unused memory).

10−2 10−1 100 101 102

job footprint [machines]

0.0

0.2

0.4

0.6

0.8

1.0

Autopilot ML
Autopilot moving window
manual, hard limit
manual, soft limit

(c) CDF of the footprint (total limit).

Figure 3. Resource usage. CDFs over job-days of a random sample of 5 000 jobs in each category, drawn from across the entire fleet.

0.0 0.2 0.4 0.6 0.8 1.0
memory slack, p95

0.0

0.2

0.4

0.6

0.8

1.0

Autopilot m+1
Autopilot m+2
manual m-2
manual m-1

(a) CDF of relative slack (fraction of claimed,
but unused memory)

10−2 10−1 100 101 102

absolute slack [machines]

0.0

0.2

0.4

0.6

0.8

1.0

Autopilot m+1
Autopilot m+2
manual m-2
manual m-1

(b) CDF of absolute slack (amount of claimed,
but unused memory)

10−2 10−1 100 101 102

job footprint [machines]

0.0

0.2

0.4

0.6

0.8

1.0

Autopilot m+1
Autopilot m+2
manual m-2
manual m-1

(c) CDF of the footprint (total limit)

Figure 4. Resource usage. CDF over job-days. 500 jobs that migrated to Autopilot.

0.0 0.2 0.4 0.6 0.8 1.0
relative OOMs

0.975

0.980

0.985

0.990

0.995

1.000

Autopilot ML
Autopilot moving window
manual, hard limit
manual, soft limit

Figure 5. Cumulative distribution function of relative OOMs (num-
ber of OOMs per day normalized by the number of tasks) by job-
days. Note non-zero y-axis offset – the vast majority of jobs-days
have no OOMs, e.g., in the Autopilot cases, over 99.5% of job-days
are OOM-free.

so a task should OOM more rarely. The line slopes in Fig-
ure 6 represent how strongly the OOM rates relate to slack,
while the intercepts reflect the overall number of OOMs. The
regression line for non-Autopiloted jobs with soft limits falls
below non-Autopiloted jobs with hard limits; there is a simi-
lar strict dominance between Autopiloted jobs that use the

Figure 6. A scatterplot showing OOMs vs slack. A point corre-
sponds to a single job-day; the point’s color shows how limit is set
for that job on that day. Lines (with a 95%ile confidence interval
band) show linear regressions.

moving window algorithm and the non-Autopiloted jobs us-
ing soft limits. However, the regression for the ML algorithm
intersects the lines for jobs using a manually specified soft
limit and those using the moving window Autopilot scheme,
suggesting more OOMs for jobs with low slack – but also
fewer OOMs for jobs with higher slack.

Autopilot: workload autoscaling at Google EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Table 2. Number of job-days seriously impacted by OOMs, by algo-
rithm. Each row corresponds to a different threshold for classifying
a job-day as being seriously impacted by OOMs: e.g., in the first
row, a job-day is seriously impacted if 5, or 1/7th of the job’s tasks
(whichever is higher) are terminated with an OOM. Both “hard”
and “soft” have manual limit settings.

thresholds affected job-days
OOMs fraction tasks hard soft window ML

5 1/7 807 994 131 98
4 1/5 813 945 120 108
4 1/7 862 1059 142 109
4 1/10 916 1235 152 113
3 1/7 931 1116 149 118

Because the ML recommender results in higher average
relative OOMs rates than the sliding window recommender,
it may be that the ML recommender reduces jobs’ limits too
aggressively. However, the ML recommender is designed
to result in an occasional OOM for jobs that won’t be im-
pacted too much. As we explained in Section 2, our jobs are
designed to absorb occasional failures – as long as there are
sufficiently many surviving tasks able to absorb the traffic
that the terminated task once handled. This is working as
intended, and the benefit is bigger resource savings. Yet one
might reasonably still be concerned that the recommender
is being too aggressive.
To explore this concern, we categorized a job-day as be-

ing seriously impacted by OOMs when it experiences more
OOMs during the day than the larger of a threshold number
(e.g., 4) or fraction (e.g., 1/7) of its tasks. Table 2 shows the
number of job-days that were seriously impacted by OOMs
across some threshold settings ranging from more liberal
(top) to more conservatitive (bottom). Although the absolute
numbers slightly vary, the relative ordering of the methods
stays the same.
Among non-Autopiloted jobs, we were surprised to find

that the jobs with hard RAM limits, while having more rela-
tive OOMs (as discussed above), were less seriously affected
by OOMs. We hypothesize that users may be manually spec-
ifying soft limits for jobs with an erratic memory usage
pattern that are particularly difficult to provision for. Among
Autopiloted jobs, as expected, while jobs using the moving
window algorithm have less relative OOMs, they are some-
what more likely to be seriously affected by OOMs than jobs
using the ML algorithm.
We also studied in more detail how concentrated OOMs

are across jobs. If most OOMs occur in just a few jobs, this
might point to a systematic problem with the autoscaling
algorithm — we would rather have many jobs experiencing
infrequent OOMs.We analyze jobs that had at least one OOM
during the month. For each such job, we count the days with
at least one OOM (we count OOM-days, rather than simply
OOMs or relative OOMs, to focus on the repeatability, rather

0 1 2 3 4 5 6 7 8 9
Number of limit changes per day

0.6

0.7

0.8

0.9

1.0

moving window
ML

Figure 7. CDF of the number of limit changes per job-day. Note
non-zero y-axis offset.

than magnitude, which we measured above). For Autopilot
ML, 46% of such jobs OOM exactly once; and 80% of jobs
OOM during 4 days or less. In contrast, in Autopilot moving
window recommender, only 28% of jobs OOM exactly once;
and 80% of jobs OOM during 21 days or less.
In our second sample population (jobs that migrated to

Autopilot), the number of OOMs is too small for meaningful
estimates of relative OOMs and serious OOMs. In the month
before the migration, there were in total 348 job-days in
which there is at least one OOM; after the migration, this
number was reduced to just 48. Migration was successful for
these jobs.

4.4 Number of limit changes
Manually-controlled jobs rarely have their limits changed:
on our sample of 10 000 manually-limited jobs, we observed
334 changes during one month, or about 0.001 changes per
job-day. Figure 7 shows how often Autopilot changes limits
on our 10 000 job sample: a few hundred times more often
per job than users do. However, it is still quite stable: in
roughly 70% of job-days there are no changes; and the 99%ile
job-day has only 6 (moving window) to 7 (ML) limit changes
during a day. Given that it typically only takes a few tens
of seconds to find a new place for a task even if it is evicted,
this seems a reasonable price to pay for significant savings.

One might argue that the reduction of OOMs (and serious
OOMs) reported in the previous section comes just from
changing the limits more often than a human operator. In
Figure 7, Autopilot ML and moving window have a similar
number of limit changes; yet, as Table 2 shows, Autopilot
ML uses this disruption budget more efficiently.

4.5 Behavior in time
In previous sections, we focused on long-running jobs: our
jobs were serving continuously for at least a month. In this
section, we analyze Autopilot performance as a function of
the jobs’ age. Figure 8a shows CDFs of the relative slack for
1 000 jobs of each different age range.

Jobs that have been running for less than a day have a
significantly higher slack than jobs that have been running
longer: this is a direct result of Autopilot being tuned for
long-running jobs – the more history is available, the lower

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Rzadca et. al

0.0 0.2 0.4 0.6 0.8 1.0
memory slack, p95

0.0

0.2

0.4

0.6

0.8

1.0

Started this day
Started previous day
Started 2 days ago
Started 7 days ago
Started 14 days ago

(a) CDF of memory slack for different jobs ages.

0.0 0.2 0.4 0.6 0.8 1.0
relative OOMs

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Started this day
Started this day short
Started this day, long
Started previous day
Started 2 days ago
Started 7 days ago
Started 14 days ago

(b) CDF of relative OOMs (number of OOMs per day normalized by
number of tasks) for different job ages. Note non-zero y-axis offset.

Figure 8. Performance over jobs with short history. Each different
age range has 1 000 jobs sampled from our whole fleet.

the slack. But even after 14 days the slack is still higher than
for the steady state analyzed in the previous section.

The analysis of relative OOM rates (Figure 8b) shows that
Autopilot is cautious with short jobs. For jobs with less than
24h duration, there are almost no OOMs: however, if we filter
out short jobs (ones with total task duration of less than 1.5
hours), there are more OOMs than in the steady state. Once
we consider jobs that started 7 or more days ago, the relative
OOM rates are comparable to the steady state behavior.

5 Winning the users’ trust: key features
for increasing adoption

Our infrastructure serves thousands of internal users who
have varied roles, experience and expectations. Smaller or
newer services are typically run in production by software
engineers who originally created them, while larger, more
established services have dedicated dev/ops teams. To in-
crease Autopilot’s adoption we had to not only make sure
the quality of our algorithmswas acceptable, but also identify

and answer needs our engineers have from the infrastruc-
ture. This section discusses these qualitative aspects. Our
experience reinforces many of the lessons described in [5].

5.1 Evaluation process
Along with Autopilot, we developed a process to evaluate
potential recommenders. A recommender is first evaluated
in off-line simulations, using traces of resource usage of a
representative sample of jobs. While such evaluation is far
from complete (we detailed problems in Section 4.1), it is
good enough to determine whether it is probably worth
investing more effort in a recommender. If so, we proceed to
using dry runs, in which the recommender runs as part of the
production Autopilot service along side other recommenders
– its recommendations are logged, but not acted upon. In both
phases, we analyze the usual statistical aggregations such as
means and high percentiles, but also pay particular attention
to outliers – jobs on which the recommender performed
particularly badly. These outliers have helped catch both
bugs in implementation and unintended consequences of
our algorithms.
Afterwards, we perform A/B tests in which the new

recommender drives limits in production for a small fraction
of users within a chosen cluster. Even a complete algorithm
failure in this phase is unlikely to be catastrophic: if a job
fails in one cluster, the service’s load balancer will switch its
traffic to other clusters, which should have enough capacity
to handle the surge.

Finally, when the new recommender compares favorably
in A/B tests, we gradually deploy it as a new standard for the
entire fleet. To reduce the risk of possible failures, roll-outs
are performed cluster by cluster, with multi-hour gaps be-
tween them, and can be rolled back if anomalies are detected.

5.2 Autopilot limits easily accessible to job owners
Our standard dashboard (Figure 9) for resource monitoring
displays the distribution of job CPU and memory usage as
well as the limits Autopilot computed – even for jobs that
are not Autopiloted (for these jobs Autopilot runs in simu-
lation mode). The dashboard helps the user to understand
Autopilot’s actions, and build trust in what Autopilot would
do if it was enabled on non-Autopiloted jobs: the user can
see how Autopilot would respond to daily and weekly cycles,
new versions of binaries or suddenly changing loads.

5.3 Automatic migration
Once we had sufficient trust in Autopilot’s actions from
large-scale off-line simulation studies and smaller-scale A/B
experiments, we enabled it as a default for all existing small
jobs (with an aggregate limit of up to roughly 10 machines)
and all new jobs. Users were notified well in advance and
they were able to opt-out. This automatic migration trivially
increased adoption with practically no user backlash.

Autopilot: workload autoscaling at Google EuroSys ’20, April 27–30, 2020, Heraklion, Greece

(a) A trace of an Autopiloted job. Just after 8:00, some tasks started to exhibit an increased level of memory usage; Autopilot
promptly increased the job’s limit.

(b) A trace of a job using manually specified limits and with Autopilot running in simulation mode. A new roll-out had a
memory leak that caused the memory usage to steadily increase. At about 17:30, the job’s monitoring system started to page
on-calls as the job started to OOM. It was not until 19:30 that the on-call dev/ops engineer managed to increase the job’s
memory limit (limit oscillations between 18:20 and 19:00 are an artifact of misalignment of time series data from the monitoring
system). If the job had been Autopiloted, it would probably not have OOMed as the automatically increased limits would have
given dev/ops more time to discover the memory leak and roll back to the previous version of the binary.

Figure 9. Screenshots of our monitoring dashboards for two production jobs. The dashboard includes a color-coded heatmap which indicates
the number of a job’s tasks with a certain usage at a particular time moment.

5.4 Overriding recommenders with custom
recommenders

Autopilot’s algorithms rely on historical CPU/memory usage
to set future limits or task counts. However, for some jobs
other signals are better predictors of the limits: for instance,
the load of our filesystem servers depends almost linearly
on the total size of the files controlled by the server. Addi-
tionally, some long-running services had already developed
their own horizontal autoscalers before Autopilot, some of
which contained sophisticated, finely-tuned logic that had
been refined over many years (although they often had only
a subset of Autopilot’s features, and they did not always keep
up with changes in Borg). Autopilot’s custom recommenders
permit users to preserve the critical parts of such algorithms
– computation of the number of tasks or individual task re-
source limits – while delegating support functions such as
actuation to the Autopilot ecosystem.
Custom recommenders proved popular: 3 months after

they were made available, custom recommenders were man-
aging 13% of our entire fleet’s resources.

6 Reducing engineering toil
Google follows the dev/ops principle of reducing toil: tedious,
repetitivework should be performed bymachines rather than
engineers and so we invest in automation to do so. Autopilot
is one example.
A job’s limits need to be increased as the job’s work-

load increases. Popular services, even excluding the initial
rapid growth phase, probably should be resized bi-weekly
or monthly. And each roll-out of a new binary version may
require limit adjustments. Suppose these were done manu-
ally. We assume that a manual resize requires on average
30 minutes of work: to change the configuration file, sub-
mit the change to the version control system, review the
proposed change, initialize the roll-out and monitor its re-
sults. For our sample of 10 000 jobs with manual limits, even
the 334 manual limit adjustments represent a total toil of
roughly a person-month – and this is significantly less than
the expected number of updates.
Autopilot’s horizontal scaling – adding tasks to running

jobs – automatically handles organic load growth. Autopi-
lot’s vertical scaling can handle both per-task load changes

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Rzadca et. al

and the effects of rolling out of a new binary. Both represent
significant toil reduction.

We asked several owners of large jobs whomigrated to Au-
topilot to estimate the reduction in toil they had experienced.
One large service (composed of multiple jobs) reported that
before migrating to Autopilot they performed roughly 8 man-
ual resizesmonthly. Another service estimated that Autopilot
saves them 2 hours of human work per month previously
needed for manual resizes. Another service, for which load
varied significantly between clusters and in time, needed
about 12 manual resizes per month.
Another benefit is reducing the interrupts (pages) that

must be handled by on-call dev/ops engineers. With in-
creased reliability, tasks fail less often, and the reporting
system issues fewer alarms. This reduction is especially pro-
nounced for jobs with loads that vary significantly across
clusters: the toil of setting different manual limits is a fre-
quent source of problems, and even complicates monitoring.
One service reported that aftermigration, Autopilot increased
memory limits in some clusters, which resulted in reducing
the number of OOMs from roughly 2 000 a day to a negligi-
ble number. Another service reported no OOMs for almost a
year following the migration; the number of on-call pages
was reduced from 3 per week to less than 1 (the remaining
pages were for unrelated problems).
Autopilot’s tighter resource limits may expose bugs in

jobs that went unnoticed with larger limits. Rare memory
leaks or out-of-bounds accesses are notoriously difficult to
find. While Autopilot works well in most cases, it may still
require customized configuration for a few jobs. Thus, when
a job is migrated to Autopilot and then starts to OOM fre-
quently, it can be difficult to distinguish between Autopilot
mis-configurations and a true bug. One group blamed Au-
topilot’s memory limit setting algorithm for such a problem,
and only discovered the root cause a few weeks later: a
rarely-triggered out-of-bounds memory write.

And finally, Autopilot is used heavily by batch jobs (88% of
such jobs by CPU enable it). We surmise that this is because
Autopilot eliminates the need for a user to even specify limits
for such jobs.

7 Related work
While Autopilot actuation, UX and some customisations are
specific to Borg, the problem Autopilot solves is almost uni-
versal in cloud resource management.

The desired number of replicas and their resource require-
ments are expected to be provided by users in many cloud
resource management systems, as the scheduler uses them
to pack tasks to machines [14]. Borg [34], Omega [29] and
Kubernetes [3] all require their users to set such limits when
submitting jobs (Borg, Omega) or pods (Kubernetes). YARN
[32] requires applications (jobs) to state the number of con-
tainers (tasks) and the CPU and RAM resource requirements

of each container. In a somewhat different context, sched-
ulers for HPC systems, such as Slurm [37], require each batch
job to specify the number of machines.

Other studies confirm low utilization in private clouds that
we observed in our infrastructure when jobs have their limits
manually set. [30] analyzes 5-day usage of a 10 000-machine
YARN cluster at Alibaba, and reports that 80% of time, RAM
utilization is less than 55%. [23] analyzes a short (12-hour)
Alibaba trace, showing that for almost all instances (tasks),
the peak memory utilization is 80% or less. [26], analyzing
the 30-days Google cluster trace [27], shows that although
the mean requested memory is almost equal to the total
available memory, the actual usage (averaged over one-hour
windows) is below 50%.

An alternative to setting more precise limits is to oversub-
scribe resources, i.e., to deliberately assign to a machine tasks
such that the sum of their requirements is higher than the
amount of physical resources available locally. [30] shows a
system oversubscribing resources in a YARN cluster. While
oversubscription can be used in batch workloads that can
tolerate occasional slowdowns, it may lead to significant in-
creases in tail latency for serving workloads – which requires
a careful, probabilistic treatment [2, 21].

Horizontal and vertical autoscaling requires the job to be
elastic. In general, many classes of applications are notori-
ously difficult to scale. For example, JVMs, in their default
configuration, are reluctant to release heap memory. Fortu-
nately for Autopilot, the vast majority of jobs at Google were
built with scaling in mind.

Autoscaling is a well-developed research area; recent sur-
veys include [11, 16, 22]. The majority of research addresses
horizontal autoscaling. [17] experimentally analyzes the per-
formance of a few horizontal autoscaling algorithms for
workflows. [10] builds probabilistic performance models of
horizontal autoscalers in AWS and Azure. [24] measures
the performance of horizontal autoscalers in AWS, Azure
and GCE. While Autopilot also has a reactive horizontal au-
toscaler, this paper largely concentrates on vertical scaling
(also called rightsizing, or VM adaptation in [16]). Kubernetes
vertical pod autoscaler (VPA, [15]) sets containers’ limits us-
ing statistics over a moving window (e.g., for RAM, the 99th
percentile over 24h). Kubernetes’ approach was directly in-
spired by our moving window recommenders (Section 3.2.2).
[25] proposes an estimator which uses the sum of the median
and the standard deviation over samples from a window.

We described two recommenders: one based on statistics
computed from a moving window, with window parame-
ters, such as length, set by the job owner (Section 3.2.2); and
another one that automatically picks the moving window
parameters based on a cost function (Section 3.2.3). An al-
ternative to these simple statistics would be to use more
advanced time series forecasting methods, such as autore-
gressive moving average (ARMA) (as in [28] that also uses a

Autopilot: workload autoscaling at Google EuroSys ’20, April 27–30, 2020, Heraklion, Greece

job performance model), neural networks (as in [18]), recur-
rent neural networks as in [9, 20] or a custom forecast as in
[13] which demonstrates thatMarkov-chain based prediction
performs better than methods based on autoregression or
autocorrelation. Our initial experiments with such methods
demonstrated that, for the vast majority of Borg cases, the
additional complexity of ARMA is not needed: jobs tend to
use long windows (e.g., the default half life time for memory
in moving window recommenders is 48 hours, Section 3.2.2);
and the between-day trends are small enough that a simple
moving window reacts quickly enough. For a recommender
that is configurable by the user we believe that it is more
important that parameters have simple semantics and that
the recommender can be tuned predictably.

Autopilot refrains from building a job performance model:
it does not try to optimize batch jobs’ completion time or
serving jobs’ end-user response latency. We found that con-
trolling the limits enables job owners to reason about job
performance (and performance problems) and to separate
concerns between the job and the infrastructure. This sepa-
ration of concerns partly relies on the cluster and node-level
schedulers. For example, Autopilot does not need to con-
sider performance problems from so-called noisy neighbors
as Borg handles them through a special mechanism [38].
To cover the few remaining special cases, Autopilot pro-
vides horizontal scaling hooks to allow teams to use custom
metrics or even custom recommenders. In contrast, many re-
search studies aim to directly optimize the job’s performance
metrics, rather than just the amount of allocated resources.
For example, in Quasar [7] users specify performance con-
straints, not limits, and the scheduler is responsible for meet-
ing them. In public clouds, in which jobs are assigned to
VMs with strict limits, Paris [36] recommends a VM con-
figuration given a representative task and its performance
metrics. D2C [12] is a horizontal autoscaler that scales the
number of replicas in each layer of a multi-tier application by
learning the performance parameters of each layer (modeled
with queuing theory). The learning process is on-line – the
application does not have to be benchmarked in advance.
Even more specific optimizations are possible if the cat-

egory of jobs is more narrow. Ernest [33] focuses on batch,
machine learning jobs, while CherryPick [1] also considers
analytical jobs. While this paper concentrates on serving
jobs, Autopilot is also used by 88% of batch jobs at Google
(measured by CPU consumption). [19] uses reinforcement
learning (RL) to drive horizontal scaling of serving jobs (with
a utility function taking into account the number of repli-
cas, the throughput and any response time SLO violations).
Autopilot’s ML recommender borrows some ideas from RL,
such as choosing a model and a limit based on its historical
performance.

8 Conclusions
Autoscaling is crucial for cloud efficiency, reliability, and
toil reduction. Manually-set limits not only waste resources
(the average limits are too high) but also lead to frequent
limit violations as load increases, or when new versions of
services are rolled out.
Autopilot is a vertical and horizontal autoscaler used at

Google. By automatically increasing the precision of limit set-
tings, it has reduced resource waste and increased reliability:
out-of-memory errors are less common, less severe and affect
fewer jobs. Some of these gains were reachable with a simple
time-weighted sliding window algorithm, but switching to
a more sophisticated algorithm inspired by reinforcement
learning enabled significant further gains.

Autopiloted jobs now represent over 48% of our fleet-wide
usage. Achieving such a high adoption rate took significant
development and trust-building measures to achieve, even
in the presence of evident gains in reliability and efficiency.
However, we demonstrated that this extra work has paid off,
as users no longer have to resize their jobs manually, and
the improved reliability results in fewer on-call alerts. We
strongly commend this approach to other users of large scale
compute clusters.

Acknowledgments
The authors of this paper performed measurements and
wrote the paper, but many other people were critical to
Autopilot’s success. Those who contributed directly to the
project include: Ben Appleton, Filip Balejko, Joachim Bar-
tosik, Arek Betkier, Jason Choy, Krzysztof Chrobak, Sła-
womir Chyłek, Krzysztof Czaiński, Marcin Gawlik, Andrea
Gesmundo, David Greenaway, Filip Grządkowski, Krzysztof
Grygiel, Michał Jabczyński, Sebastian Kaliszewski, Paulina
Kania, TomekKulczyński, SergeyMelnychuk, Dmitri Nikulin,
Rafal Pytko, Natalia Sakowska, Piotr Skowron, Paweł Stradom-
ski, David Symonds, Jacek Szmigiel, Michał Szostek, Lee
Walsh, Peter Ward, Jamie Wilkinson, Przemysław Witek,
Lijie Wong, Janek Wróbel, Tomasz Zielonka.

References
[1] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and

M. Zhang. Cherrypick: adaptively unearthing the best cloud configura-
tions for big data analytics. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’17), pages 469–482, 2017.

[2] D. Breitgand and A. Epstein. Improving consolidation of virtual ma-
chines with risk-aware bandwidth oversubscription in compute clouds.
In IEEE INFOCOM, pages 2861–2865. IEEE, 2012.

[3] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. Borg,
Omega, and Kubernetes. Queue, 14(1):10, 2016.

[4] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes. Long-term SLOs for
reclaimed cloud computing resources. In ACM Symposium on Cloud
Computing (SoCC’14), pages 1–13. ACM, 2014.

[5] C. Curino, S. Krishnan, K. Karanasos, S. Rao, G. M. Fumarola, B. Huang,
K. Chaliparambil, A. Suresh, Y. Chen, S. Heddaya, et al. Hydra: a feder-
ated resource manager for data-center scale analytics. In USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’19),

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Rzadca et. al

pages 177–192, 2019.
[6] J. Dean and S. Ghemawat. MapReduce: simplified data processing on

large clusters. In 6th Conference on Symposium on Operating Systems
Design & Implementation (OSDI’04), pages 10–10, San Francisco, CA,
2004. USENIX Association.

[7] C. Delimitrou and C. Kozyrakis. Quasar: resource-efficient and QoS-
aware cluster management. ACM SIGPLAN Notices, 49(4):127–144,
2014.

[8] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

[9] M. Duggan, R. Shaw, J. Duggan, E. Howley, and E. Barrett. A multitime-
steps-ahead prediction approach for scheduling live migration in cloud
data centers. Software: Practice and Experience, 49(4):617–639, 2019.

[10] A. Evangelidis, D. Parker, and R. Bahsoon. Performance modelling and
verification of cloud-based auto-scaling policies. Future Generation
Computer Systems, 87:629–638, 2018.

[11] G. Galante, L. C. E. De Bona, A. R. Mury, B. Schulze, and
R. da Rosa Righi. An analysis of public clouds elasticity in the ex-
ecution of scientific applications: a survey. Journal of Grid Computing,
14(2):193–216, 2016.

[12] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang. Adaptive,
model-driven autoscaling for cloud applications. In 11th International
Conference on Autonomic Computing (ICAC’14), pages 57–64, 2014.

[13] Z. Gong, X. Gu, and J. Wilkes. Press: predictive elastic resource scaling
for cloud systems. In International Conference on Network and Service
Management, pages 9–16. IEEE, 2010.

[14] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. In ACM SIGCOMM’14,
pages 455–466. ACM, 2014.

[15] K. Grygiel and M. Wielgus. Kubernetes vertical pod autoscaler:
design proposal. https://github.com/kubernetes/community/blob/
master/contributors/design-proposals/autoscaling/vertical-pod-
autoscaler.md, kubernetes community, 2018. Accessed 2019-11-04.

[16] A. R. Hummaida, N. W. Paton, and R. Sakellariou. Adaptation in cloud
resource configuration: a survey. Journal of Cloud Computing, 5(1):7,
2016.

[17] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. V. Papadopoulos, B. Ghit,
D. Epema, and A. Iosup. An experimental performance evaluation
of autoscaling policies for complex workflows. In 8th ACM/SPEC
on International Conference on Performance Engineering, pages 75–86.
ACM, 2017.

[18] S. Islam, J. Keung, K. Lee, and A. Liu. Empirical prediction models
for adaptive resource provisioning in the cloud. Future Generation
Computer Systems, 28(1):155–162, 2012.

[19] P. Jamshidi, A. M. Sharifloo, C. Pahl, A. Metzger, and G. Estrada. Self-
learning cloud controllers: fuzzy q-learning for knowledge evolution.
In International Conference on Cloud and Autonomic Computing, pages
208–211. IEEE, 2015.

[20] D. Janardhanan and E. Barrett. CPU workload forecasting of machines
in data centers using LSTM recurrent neural networks and ARIMA
models. In 12th International Conference for Internet Technology and
Secured Transactions (ICITST’17), pages 55–60. IEEE, 2017.

[21] P. Janus and K. Rzadca. SLO-aware colocation of data center tasks
based on instantaneous processor requirements. In ACM Symposium
on Cloud Computing (SoCC’17), pages 256–268. ACM, 2017.

[22] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. A review of
auto-scaling techniques for elastic applications in cloud environments.
Journal of Grid Computing, 12(4):559–592, 2014.

[23] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai. Imbalance in the cloud: an
analysis on Alibaba cluster trace. In IEEE International Conference on
Big Data (BigData’17), pages 2884–2892. IEEE, 2017.

[24] V. Podolskiy, A. Jindal, and M. Gerndt. IaaS reactive autoscaling
performance challenges. In 11th IEEE International Conference on
Cloud Computing (CLOUD’18), pages 954–957. IEEE, 2018.

[25] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari. Exploring potential
for non-disruptive vertical auto scaling and resource estimation in
Kubernetes. In 12th IEEE International Conference on Cloud Computing
(CLOUD’19), pages 33–40. IEEE, 2019.

[26] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In 3rd ACM Symposium on Cloud Computing (SoCC’12), page 7. ACM,
2012.

[27] C. Reiss, J.Wilkes, and J. L. Hellerstein. Google cluster-usage traces: for-
mat + schema. Technical report at https://github.com/google/cluster-
data/, Google, Mountain View, CA, USA, 2011.

[28] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud
using predictive models for workload forecasting. In 4th IEEE Inter-
national Conference on Cloud Computing (CLOUD’11), pages 500–507.
IEEE, 2011.

[29] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes.
Omega: flexible, scalable schedulers for large compute clusters. In 8th
ACM European Conference on Computer Systems (EuroSys’13), pages
351–364. ACM, 2013.

[30] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, and C. Li.
ROSE: cluster resource scheduling via speculative over-subscription.
In 38th IEEE International Conference on Distributed Computing Systems
(ICDCS), pages 949–960. IEEE, 2018.

[31] M. Tirmazi, A. Barker, N. Deng, Z. G. Qin, M. E. Haque, S. Hand,
M. Harchol-Balter, and J. Wilkes. Borg: the Next Generation. In
15th ACM European Conference on Computer Systems (EuroSys’20),
Heraklion, Crete, Greece, 2020.

[32] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache Hadoop
YARN: Yet Another Resource Negotiator. In 4th ACM Symposium on
Cloud Computing (SoCC’13), page 5. ACM, 2013.

[33] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. Ernest:
Efficient performance prediction for large-scale advanced analytics.
In 13th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’16), pages 363–378, 2016.

[34] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes. Large-scale cluster management at Google with Borg. In
10th ACM European Conference on Computer Systems (EuroSys’15),
page 18. ACM, 2015.

[35] J. Wilkes. Google cluster usage traces v3. Technical report at https:
//github.com/google/cluster-data, Google, Mountain View, CA, USA,
2020.

[36] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H.
Katz. Selecting the best VM across multiple public clouds: A data-
driven performance modeling approach. In ACM Symposium on Cloud
Computing (SoCC’17), pages 452–465, 2017.

[37] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: simple Linux utility
for resource management. InWorkshop on Job Scheduling Strategies
for Parallel Processing, pages 44–60. Springer, 2003.

[38] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes.
CPI2: CPU performance isolation for shared compute clusters. In 8th
ACM European Conference on Computer Systems (EuroSys’13), pages
379–391, 2013.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/vertical-pod-autoscaler.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/vertical-pod-autoscaler.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/vertical-pod-autoscaler.md
https://github.com/google/cluster-data/
https://github.com/google/cluster-data/
https://github.com/google/cluster-data
https://github.com/google/cluster-data

	Abstract
	1 Introduction
	2 Managing cloud resources with Borg
	2.1 Machines, jobs and tasks
	2.2 Borg scheduler architecture
	2.3 Resource management through task limits

	3 Automating limits with Autopilot
	3.1 Architecture
	3.2 Vertical (per task) autoscaling
	3.3 Horizontal autoscaling

	4 Recommender quality
	4.1 Methodology
	4.2 Reduction of slack
	4.3 Reliability
	4.4 Number of limit changes
	4.5 Behavior in time

	5 Winning the users’ trust: key features for increasing adoption
	5.1 Evaluation process
	5.2 Autopilot limits easily accessible to job owners
	5.3 Automatic migration
	5.4 Overriding recommenders with custom recommenders

	6 Reducing engineering toil
	7 Related work
	8 Conclusions
	Acknowledgments
	References

